Category Archives: Renewables

Clean Tech: Wishing We Were China for a Day

In his book “Hot, Flat, and Crowded,” Tom Friedman wishes that America could be “China for a day…but only one day.”

Friedman writes:

If only…If only America could be China for a day — just one day.

As far as I’m concerned, China’s system of government is inferior to ours in every respect — except one. That is the ability of China’s current generation of leaders — if they want — to cut through all their legacy industries, all the pleading special interests, all the bureaucratic obstacles, all the worries of a voter backlash, and simply order top-down the sweeping changes in prices, regulations, standards, education, and infrastructure that China’s long-term strategic national interests — changes that would normally take Western democracies years or decades to debate and implement. That is such an asset when it comes to trying to engineer a sweeping change, like the green revolution, where you are competing against deeply embedded, well-funded, entrenched interests, and where you have to motivate the public to accept certain short-term sacrifices, including higher energy prices, for long-term gains. For Washington to be able to order all the right changes and set up the ideal market conditions for innovation, and then get out of the way and let the natural energy of the American capitalist system work — that would be a dream.
– Tom Friedman, “Hot, Flat, and Crowded

Friedman goes on to cite examples of mandating unleaded gasoline: America started the process in 1973 and didn’t finish until 1994. China accomplished the same between 1998 to 2000. America stalled 32 years before implementing new vehicle efficiency standards, but China took only two years.

Friedman’s “China for a day” thought was sparked by an interview with GE’s CEO, Jeff Immelt, who commented,

“What doesn’t exist today in the energy business is the hand of God. I think if you asked the utilities and big manufacturers in this business what they would most like, it would be for the president to stand up and say: ‘By 2025 we are going to produce this much coal, this much natural gas, this much wind, this much solar, this much nuclear, and nothing is going to stand in the way.’ You’d have about thirty days of complaining, and then people…would just stand up and say, ‘Thank you, Mr. President, now let’s go do it.'”

…and we would. I’d be one of them.

America’s CleanTech Vision, Adapted for the Stage

Image credit: unknown

In America, we instead have the political theater that unfolded this past week in Congress (for example).  I heard Peter Sagal describe it best during this past weekend’s broadcast of the “Wait, Wait, Don’t Tell Me” news quiz on NPR.

PETER SAGAL: The House this week tried, but failed, to keep the government from taking away America’s what?
(Soundbite of bell)

SAGAL: Incandescent light bulbs! This is what happened; I will explain. Back in 2007, a bipartisan majority in Congress, and President Bush, passed a law [the Energy Independence and Security Act of 2007, which was voted in at 314-100 that year,] calling for a major increase in light bulb efficiency. It’s only now that Republicans, including the guy who actually sponsored that bill [Rep. Mary Bono Mack], realized that the whole thing was a plot by President Obama to rob us of our freedom, using his Kenyan socialist time-traveling technology.
(Laughter)

SAGAL: So they tried this week to repeal the law calling for light bulb standards. Presidential candidate Michele Bachmann weighed in. She said, quote, “The American people want less government intrusion into their lives, and that includes staying out of their personal light bulb choices,” unquote.
(Laughter)

SAGAL: Ms. Bachmann believes Americans should have perfect freedom to screw whatever they want, but only if we’re talking about light bulbs.
(Laughter)

The sad thing is that after the Republican’s repeal failed, they voted successfully to strip the Department of Energy of the funding necessary to enforce the lightbulb switch. Read more here.

Stimulus Funding — Thanks, but No Thanks

Take a look at this graph of the DOE’s solar energy technology research funding profile. Do you think this is the right way to fund an organization…let alone a nation-wide research effort?

Image credit: Department of Energy

It would have made infinitely more sense to spread that huge spike from the stimulus evenly over 4-5 years. Last year I saw the DOE struggle mightily to manage twice the amount of funding (and triple the money from 2006). Spreading out the funding was, of course, not politically feasible for Obama. He had to pass the stimulus and then move on to the next fight. Obama had to beat the clock before the Republicans took the House in 2010.

I recently spoke with a friend who works for a senior DOE official; he said that under the current political climate, staffers are expecting a 30% budget cut in the DOE’s EERE (Energy Efficiency and Renewable Energy) office funding. He also said he wouldn’t be surprised if the Republicans killed ARPA-E — a new Obama initiative to pursue high-risk/high-reward energy technologies — within a year or so.

This on-again, off-again nature of clean tech research funding in the U.S. prevents innovators and engineers from gaining momentum through sustained funding, and it makes investors skittish about the unpredictability of government support.

The CEO of one clean tech company that I’m involved with — a company that was one of the largest recipients of DOE research stimulus funding, landing nearly $10MM in contracts — quipped “The DOE is driving this company out of business!”

No, he was not just being an ungrateful S.O.B. The company had received notices from the DOE that they were selected for awards. The CEO took the risk…assuming the money would come in on the usual timeframe…to start hiring the additional engineers necessary to execute the projects. This is exactly what the stimulus was intended for! Instead, the DOE, which was overwhelmed with administering double the number of projects, took nearly six months to get the funding in place. In the meantime, the company couldn’t bill for its work and bled cash in paying all the additional heads.

Just Leave it to the Free Market!

In Europe, the grass roots support of clean tech is strong, so governments are much more likely to mandate utility renewable portfolio standards and higher vehicle efficiency standards. On the other hand, Europe has triple the electricity and gasoline costs than in the U.S.

On the other side of the world, in China, the government issues 5-year plans and can mandate sweeping reforms in a matter of months. On the other hand, China suffers from lack of enforcement and grass roots initiative.

In the U.S., free-market conservatives say that anything the government can do, the market will do better. Want to bet? I’d wager they’ve never sat on a standards development committee, which is one way the free market decides on technologies, performance, and safety standards…these committees move painfully slow!

Can you imagine building our national highway system based on free market incentives? A commercial company trying to do that would go bankrupt just from fighting all the lawsuits from affected neighborhoods.

Can you imagine building the space shuttle and space station programs using the free market? Several companies are currently trying to build tourist spacecraft (30 years after the first space shuttle was built), and they’ll only have a fraction of the altitude and payload of the shuttle.

We Can be China for a Day…and Better than China Thereafter

There definitely is a role for government in providing leadership for big, important projects. The space program, the national highway system, the military, safety enforcement for drugs and food are among them…and so is clean tech. The government doesn’t necessarily need to bankroll clean tech the way that it paid for the entire highway system, because financing that’s the role of the free market.

What the government does need to do is:

  1. Provide bold, clear targets to give the industry’s technologists direction, and
  2. Its support needs to be unwavering, to give investors the peace of mind that the rules won’t dramatically change after the next election cycle. 

Voters need to demand that of their representatives at the polls and through advocacy, because if the government provides the marching orders, my colleagues and I in the clean tech industry will do the rest!

— August 20, 2011 UPDATE —

RenewableBizDaily recently posted this interesting, short article describing how China is out-pacing the United States in most aspects of renewable energy development. Much of this is simply due to the country’s explosive economic growth, which driven by the move of millions of people into cities and at a higher standard of living. However, the country’s support of clean technologies — as opposed to more traditional coal, oil, and gas energy sources — is driven by the Chinese government’s ability to make decisions more quickly, decisively, and definitively than those in the West. It’s a short article, so take a look, here.

R&D 100 Award Winner

On Wednesday, R&D Magazine announced the winners of the 2011 R&D 100 Awards. These awards are known as the “Oscars of Innovation.”

The annual R&D 100 Awards identify the 100 most significant, newly introduced research and development advances in multiple disciplines. Winning one of the R&D 100 Awards provides a mark of excellence known to industry, government, and academia as proof that the product is one of the most innovative ideas of the year, nationally and internationally.
– Wikipedia

Image credit: R&D Magazine website.

Not one but two new products I was involved with won the R&D 100 Awards this year!

Princeton Power Systems’ Demand Response Inverter (DRI)

The DRI was one of my projects at Princeton Power Systems (PPS), together with Mahesh Gandhi and Paul Heavener. I’d love to list all the talented engineers who worked on the project — they’re the ones who got the work done despite management’s best efforts to the contrary! — but I’m afraid they’d immediately get recruited by headhunters if I publicly listed their names. They know who they are and know how much I appreciate their hard work.

The DRI was funded under the Solar America Initiative and was one of the 4 winners of a Stage III Solar Energy Grid Integration Systems (SEGIS) commercialization contract from the DOE and Sandia Labs. PPS and I owe a huge debt of gratitude to Ward Bower and his team at Sandia for their support over the past several years.

Image credit: Princeton Power Systems website

The DRI significantly simplifies the integration of solar to the grid. As I described briefly in this post and I’ll describe in more detail in an upcoming post, utility companies would much prefer to see a constant flow of power coming from a solar array. The solar array’s random output due to weather, varying cloud cover, and changing temperature make it incredibly difficult for utility companies to predict the power that will be available on the grid.

The simple solution is to add energy storage. In order to truly solve the problem of intermittancy, however, the energy storage system must be able to respond fast enough to make the power flow “seamless” when a cloud suddently casts shade on the solar array. By integrating both the solar and battery power converters into one box with an intelligent control system “blending” the power, the DRI can make the solar array “look” to the utility company like a steady power generation source.

Integrating a fourth terminal for motor/generator control provides additional benefits, such as the ability to decrease power consumption on demand. The DRI should be available as a product in the next few months, so stay tuned to the Princeton Power website for more details.

Successful Research Projects depend upon Luck and Networking

I first came across silicon carbide when I was doing some homework for a NJ Commission on Science and Technology funding grant. The Commission’s goal was to encourage collaboration between NJ universities and NJ companies, so I started looking at the research programs at various NJ schools to see if they were working on anything relevant to my work at PPS. Lo and behold, I came across Prof. Jian Zhao’s silicon carbide research at Rutgers. After a brief meeting in his office I realized that we could use his high-voltage silicon carbide thyristor research — which he had shelved several years earlier — in PPS’s AC-link power converter. AC-link and SiC thyristors by themselves were good, but combined in one product for Navy shipboard power distribution and wind and wave power conversion, they would cut energy losses by 2/3 and increase power density (reduce size) by 5-10x! Together, we would be the first to integrate silicon carbide thyristors in an actual end product, using devices developed by Prof. Zhao’s spinoff company, United Silicon Carbide.

Thus started a 3-year research program funded jointly by New Jersey, the U.S. Navy, and the Department of Energy. In particular, thanks to Steve Swindler at NAVSEA for his ongoing support of this effort.

Some time during year one, I met Jon Greene and his team at Widetronix at an SBIR conference in DC. They had an interesting technology to solve some of the reliability problems with silicon carbide, which I wrote about in this post. They introduced me to Ranbir Singh at GeneSiC Semiconductor, who was also developing a silicon carbide thyristor product.

GeneSiC Semiconductor’s 6kV Silicon Carbide (SiC) Thyristors

Ranbir and I have had a close working relationship ever since this initial introduction. I encourage anyone interested in silicon carbide to look into their products. For a small business, their technology, manufacturing, and test capabilities are quite impressive.

GeneSiC won the R&D 100 Award for its 6kV silicon carbide thyristor product, which I started integrating into a prototype AC-link power converter at PPS. There are still some hurdles to overcome, but the technology is incredibly promising.

This little device (the image below is its true size) can switch 20-50 times faster than existing silicon thyristors under voltage stresses that are 50x higher than the 120V power outlet in your home. They are sure to become the “valves” used in utility-scale power distribution equipment to control power flow on the future smart grid.

Image credit: GeneSiC Semiconductor website

Congratulations to Ranbir and his team.

Are you in-the-know with other successful technologies?

If any readers have exposure to the technology and products developed by other R&D 100 Award winners, please email me. I’d be interested to learn more about these other innovations.